How does a lotus leaf protect your car?

Something everyone on the planet has first hand experience with is cars.  With harsh weather, sunshine, road salts and other chemicals being thrown at your vehicle, literally at breakneck speeds, protecting the paint and underlying metal is a big challenge.  Once the clear coat or paint starts eroding, your expensive vehicle starts looking bad.  Or worse, the metal starts corroding…  So how does a lotus leaf protect the paint?  Is it some new kind of vegan wrap?  No, not exactly.

The surface of a lotus leaf actually repels water.  It’s how the giant leaf stays afloat and shields the fish underneath from the sun and other predators. By studying and learning from nature, biologists and chemists have been able develop amazing new nano-coatings that repel water, oils and other undesirable elements to better protect surfaces, create new capabilities and make life better.

New nano-coatings can give painted metals, plastics and other materials super hydrophobic, oleophobic and even antistatic properties.   Imagine a car exterior or interior that repels water and oils making cleanup faster and easier.  That means it stays cleaner longer, uses less soap or detergents and requires less scrubbing or washing.  What if this “miracle coating” was permanent or lasted for years?   That would save a lot of time and money and be a whole lot better for the environment!

With billions of cars on the road, this is a BIG deal and the industry is taking off.  Nano-coatings when applied properly, put a very thin, typically clear or invisible layer that molecularly bonds to the substrate, e.g. painted metals, plastic, fabric, etc.  For car exteriors, silicone dioxide and ceramic blends are becoming popular due to the hardness and heat resistance.  The value of the hardness can tend to be overstated though.  Any material can scratch when scraped against a similarly hard material or hit with enough impact.  Clear coatings are mostly silicone dioxide or some type of clear substance with other “hardeners” added.  They are not 100% ceramic or even diamond for that matter, else they would be opaque (not clear). So, a small rock can certainly scratch the coating or dent the underlying paint and metal.  BUT, it will certainly reduce the scratches, depending on the materials and concentrations in the coating.  Where the hardness will be most beneficial is protecting against everyday use like fingernail scratches at the door handles and cloth scratches from washing or drying.  Even soft sponges trap dirt.  Unlike waxes, swirl marks should be a thing of the past as buffing is no longer necessary.

The biggest benefit comes from the hydrophobic properties of the nano-coating.  The ability to repel water or oils or other dirt elements keeps the surface cleaner, longer.  And when cleanup is needed, it’s a lot easier as the water droplets have less surface area in contact with the surface meaning less hard calcium buildup and less dirt to clean.  That means, fewer chemicals, milder, more sustainable soaps, less scrubbing and fewer scratches wearing down the paint.  Essentially and a much longer lasting beautiful shine without the hassles.  Best of all, nano-coatings are inexpensive.  Some even last for years as opposed to weeks or months like waxes and sealers.  At the low cost, there’s really no reason not to add nano-coatings to protect your investments.

PermaClean Auto 9H is a unique silicone/ceramic hybrid polymer nano-technology that is hard, but provides added elasticity.  It does not require special applicators as it can be sprayed or wiped on in minutes by any consumer.  It dries in 5 minutes and cures in 24 hours (faster under heat lamps).  It has a special benefit of adding temperature resistance up to 500C (932F) and UV protection to save your investment from baking in the sun.  It’s highly durable and has been tested to last for 5-6 years.  Of course, treating a new car or having the paint re-conditioned by a pro before hand is ideal.  3fficient recently launched an entire line of specialty nano-coatings that add amazing properties to everyday surfaces like windows that reject solar heat, kitchens that reject bacteria, fabrics that reject spills and cars that stay cleaner longer.

Important note.  When comparing products, remember to compare features and durability first.  When comparing price, always calculate the cost per coverage area ($/SF) and how long it will last – not the cost per ounce or bottle.  Some cheaper products don’t last very long and many are very expensive for the limited area they cover.

GAO: Climate change now costing U.S. billions

Webster’s defines addiction as, “compulsive need for and use of a habit-forming substance”.  “Persistent compulsive use of a substance known by the user to be harmful“.  Americans, strike that, Humans are easily addicted.  We know deep down that our addiction is very costly. Yet we keep at it.  Often hoping someone else will deal with our problem and just make it go away.  But, the problem is, it usually doesn’t.  In fact, it typically gets worse.  Much worse.  According to addiction.com, it starts with denial, then anger, bargaining, depression and acceptance.

In the United States and much of the developed world, we have many addictions, but one that is now showing great harm to all of humanity is our addiction to fossil fuels.  While nearly every climate scientist in the world and most natural scientists are in firm agreement, it really doesn’t take a science degree to observe what is happening over time and deduce the root cause.  Our natural world is drastically changing before our eyes.  As a species on top of the food chain, we are in clear denial.  Most business and regulatory decisions are still being made on short term economic impacts without regard to long term economics and jobs or for that matter, resources.

With the Trump administration in firm denial of our fossil folly, the implications of our addictions are swelling rapidly.  Unfortunately, Mother Nature is doing her thing and seems to be ignoring social media.  Disasters from man made global warming are continuing to worsen and become more frequent.  But finally, the major re-insurers and even the GAO are assigning economic impacts to these disasters and THAT will change business decisions in capital markets. No doubt the addicts will try to squelch the scientists and doctors trying to fix the addiction (to fossil fuels), but in the end we all have to own up to our own addictions and take actions.

We can cost effectively make our buildings incredibly efficient and smarter, especially the existing ones.  We can choose renewable energy on our buildings.  We can adding storage to eliminate “the middle man” (utilities).  We can choose to buy electric vehicles and easily charge them at home, work or on the go like we do our cell phones. Above all, we MUST defend our right to choose to end the fossil folly that is driving our planet to extinction like the dinosaurs.  In the end, actions speak louder than words.  Do more with less!  Be 3fficient.

Managing Energy Costs in Grocery Stores

[vc_row][vc_column][vc_column_text css=”.vc_custom_1507823430100{margin-bottom: 0px !important;}”]Energy costs can account for up to 15 percent of a grocery store’s operating budget.  The US average was roughly $4/SF in 2015.  For example, a 40,000 square foot store might spend $160,000 a year just for electricity.  Because grocery stores’ profit margins are so thin—on the order of 1 percent—every dollar in energy savings is equivalent to increasing sales by around $59.  In this example, let’s say energy costs are cut 20%, that would equal $32,000 in savings the first year.  That’s equivalent to ($32,000/.01) $3.2M in sales.  Kind of a BIG deal!

Grocery stores in the US use an average of 52.5 kilowatt-hours (kWh) of electricity and 38,000 Btu of natural gas per square foot annually. In a typical grocery, refrigeration and lighting represent about 65 percent of total use (Figure 1), making these systems the best targets for energy savings.[/vc_column_text][vc_row_inner][vc_column_inner width=”1/2″][vc_column_text css=”.vc_custom_1507823360409{margin-bottom: 0px !important;}”][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/2″][vc_column_text css=”.vc_custom_1507823336638{margin-bottom: 0px !important;}”][/vc_column_text][/vc_column_inner][/vc_row_inner][vc_column_text css=”.vc_custom_1507912524423{margin-bottom: 0px !important;}”]

Figure 1: Energy consumption by end use
In grocery stores, refrigeration and lighting are the bulk end uses for electricity; space heating and cooking dominate natural gas use, albeit a much smaller pie than electricity.

 

You’ll be better able to manage your store’s energy costs if you understand how you’re charged for energy. Most utilities charge commercial buildings for their natural gas based on the amount of energy (therms) delivered. Electricity, on the other hand, can be charged based on two measures—consumption (kWh) and demand (kW). The consumption component of the bill is based on how much electricity, in kWh, the building consumes during a month. The demand component is the peak demand, in kilowatts (kW), occurring within the month or, for some utilities, during the previous 12 months. Monthly demand charges can range from a few dollars per kW to upwards of $20/kW. Peak demand can be a considerable percentage of your bill, so care should be taken to reduce it whenever possible. As you read these energy cost management recommendations, keep in mind how each one will affect both your consumption and your demand.

Here are some fixes you can do:

Read more